Crystal Structures of Bis(r-1,c-3,c-5-cyclohexanetriamine)cobalt(III) Iodide and Tricyano(r-1,c-3,c-5-cyclohexanetriamine)-cobalt(III) Monohydrate

Minoru Ishii,* Michiko Umehara, and Masayoshi Nakahara Department of Chemistry, Faculty of Science, Rikkyo (St. Paul's) University, Nishiikebukuro 3, Toshima-ku, Tokyo 171 (Received June 13, 1986)

The crystal structures of bis(r-1,c-3,c-5-cyclohexanetriamine)cobalt(III) iodide (1) and tricyano(r-1,c-3c-5-cyclohexanetriamine)cobalt(III) monohydrate (2) were determined by the X-ray diffraction technique. 1 is monoclinic with space group A2/a, a=10.437(2), b=16.131(2), c=12.486(2) Å, and $\beta=94.36(3)^\circ$, and 2 is orthorhombic with space group Pbca, a=12.599(1), b=16.818(2), and c=11.659(1) Å, the final R values for 1 and 2 were 0.048 and 0.045, respectively. In both the complexes, all six-membered chelate rings formed by the r-1,c-3,c-5-cyclohexanetriamine ligand and central cobalt atom assume chair conformations. The presence of the six-membered chelate rings does not introduce much distortion on the octahedral geometry of the chromophores. These findings are in fair agreement with spectroscopic data on these complexes.

r-1,c-3,c-5-Cyclohexanetriamine (Fig. 1; abbreviated as chta) can act as a terdentate ligand and coordinate to the central metal in only one topological way (facial). Two kinds of complexes containing chta ligand, $[Co(chta)_2]^{3+2}$ and $[CoX_3(chta)]^{3}$ (X=CN-, Cl-, and CH₃COO-), have been prepared. expected that a chta ligand coordinates to form a triplet six-membered ring, leading to existence of three six-membered chelate rings in [CoX₃(chta)] (X=CN-, Cl-, and CH₃COO-) and that of six in [Co(chta)₂]³⁺. The d-d absorption bands of cobalt(III) complexes shift to the lower energy side as the number of chelate rings increases.4) Rather large shifts were observed also for complexes of the type [Co-(triamine)₂]³⁺: for example, 19400 and 27200 cm⁻¹ for [Co(dpt)₂]³⁺ (dpt=bis(3-aminopropyl)amine)⁵⁾ and 21800 and 30000 cm⁻¹ for s-fac-[Co(dien)₂]³⁺ (dien= diethylenetriamine).6) Although their band maxima are in lower energy sides than those of five-membered chelate polyamine complexes, they are located quite close to those of the corresponding ammine complexes: $[Co(chta)_2]Cl_3$, 20900 and 29200 cm⁻¹,²⁾ [Co- $(NH_3)_6$ Cl₃, 20960 and 29400 cm⁻¹,⁷ [Co(CN)₃(chta)], 26300 and $33000 \,\mathrm{cm^{-1}}$, $3000 \,\mathrm{cm^{$ and 33000 cm^{-1.8)} These facts suggest that the chta chelate assumes a undistorted structure in the complex. A study with scaled models has suggested that the chta ligand can build up a robust structure with the central atom. This work deals with the molecular structures of bis(r-1,c-3,c-5-cyclohexanetri-

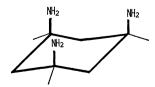


Fig. 1. r-1, c-3, c-5-Cyclohexanetriamine. (cis,cis-1,3,5-cyclohexanetriamine)

amine)cobalt(III) iodide, [Co(chta)₂] I_3 , and tricyano-(r-1,c-3,c-5-cyclohexanetriamine)cobalt(III) monohydrate, [Co(CN)₃(chta)]·H₂O.

Experimental

Both the complexes were prepared according to the literatures.^{2,3)} The crystal of [Co(chta)₂]I₃ is of orange-red hexagonal prism and that of [Co(CN)3(chta)]·H2O is of yellow cube. Anal. for [Co(chta)2]I3. Found: C, 20.45; H, 4.32; N, 11.88; I, 54.54%. Calcd for $CoC_{12}H_{30}N_6I_3$: C, 20.65; H. 4.34; N, 12.04; I, 54.54%. Anal. for [Co(CN)₃(chta)]·H₂O. Found: C, 37.44; H, 6.03; N, 28.95%. Calcd for CoC₉H₁₇N₆O: C, 38.04; H, 6.03; N, 29.57%. Specific gravities were determined by the floating method. Lattice constants were first approximately determined from Weissenberg photographs obtained with $Cu K\alpha$ radiation and then refined. Crystal data of both the complexes are listed in Table 1. Intensities were collected on a Rigaku AFC-5 four-circle diffractometer (Josai University) with graphite-monochromated Mo $K\alpha$ radiation (λ =0.7107 Å) up to 2θ =60°, the θ — 2θ scan technique being employed. The usual corrections for Lorentz and polarization effects were made with both the crystals, and further corrections for absorption and

Table 1. Crystal Data

Compound	$[\mathrm{Co}(\mathrm{chta})_{\mathtt{2}}]\mathrm{I}_{\mathtt{3}}$	$[\text{Co}(\text{CN})_3(\text{chta})] \cdot \text{H}_2\text{O}$		
Formula	$CoC_{12}N_{12}H_{60}I_3$	$C_0C_9N_9H_{32}O$		
Formula weight	698.11	284.25		
Crystal system	Monoclinic	Orthorhombic		
Space group	A2/a	Pbca		
a/Å	10.437(2)	12.599(1)		
$b/\mathrm{\AA}$	16.131(2)	16.818(2)		
c/Å	12.486(2)	11.659(1)		
β /°	94.36(3)			
$V/{ m \AA}^3$	2096.05(5)	2470.2(5)		
$D_{ m m}/{ m Mg~m^{-3}}$	2.20	1.53		
$D_{ m x}/{ m Mg~m^{-3}}$	2.21	1.53		
\boldsymbol{z}	4	8		
$\mu(\text{Mo }K\alpha)/\text{mm}^{-1}$	5.187			

extinction were made with [Co(chta)₂]I₃. Calculations were carried out on a Univac 1100 computer at the Rikkyo University Computer Center and partially on a HITAC 200 H computer at the Computer Center of the University of Tokyo.

Crystal Structure Determination. a) [Co(chta)₂]I₃: The observed systematic absence of h k l for k+l=2n+1 and h 0 l for h=2n+1 indicated that possible space groups would be A2/a or Aa. Then, two refinements were carried out independently by assuming the two space groups. ¹⁰ In the case of Aa, some C-C and C-N bond lengths were abnormal and the coordinates and temperature factors had unusually

Table 2. Final Atomic Coordinates/10-4 with Estimated Standard Deviations in Parentheses, and Their Equivalent Isotropic Temperature Factors

Atom	x	y	z	$B_{ m eq}/{ m \AA}^{2~a)}$
I (1)	2500	1169(<1)	0	3.53
I (2)	4142(<1)	6649(<1)	8855(<1)	3.18
Co	5000	7500	2500	1.82
N(1)	4387 (6)	6489 (3)	1716(5)	2.6_{0}
N(2)	5362 (6)	6835 (3)	3827 (5)	2.5_{5}
N(3)	6777 (5)	7283 (3)	2089 (5)	2.5_{3}
C(1)	5140 (7)	5704 (4)	1860 (6)	2.7_9
C(2)	5219 (7)	5428(4)	3013 (7)	3.0_3
C(3)	6041 (7)	6009 (4)	3742 (6)	2.9_3
C (4)	7351 (7)	6133 (5)	3334 (7)	3.23
C (5)	7293 (6)	6409(4)	2166 (7)	3.0_{6}
C(6)	6469 (7)	5834(5)	1442 (7)	3.3_{9}

a) $B_{\rm eq} = 4/3(B_{11}a^2 + B_{22}b^2 + B_{33}c^2 + B_{12}ab\cos\gamma + B_{13}ac\cos\beta + B_{23}bc\cos\alpha)$.

Table 3. Final Atomic Coordinates/10⁻⁴ with Estimated Standard Deviations in Parentheses, and Their Equivalent Isotropic Temperature Factors

	•	-	-	
Atom	x	y	z	$B_{\mathrm{eq}}/\mathrm{\AA^{2~a}}$
Co	2358(<1	2275 (<1) 609(<1)	1.4,
NlA	1292 (2) 1862 (2) 1745 (2)	2.1_{5}
N2A	1940 (2) 1428(2	-501(2)	2.1_{5}
N3A	3463 (2) 1575(2) 1309(2)	1.74
CIC	3344 (3	2686(2	-456(3)	1.9_{9}
C2C	1335 (3	2976(2	-8(3)	2.13
C3C	2774 (3	3103(2) 1600(3)	1.94
N4C	3936 (3)	2942 (2) -1108(3)	2.7,
N5C	698 (3)	3399(2	-360(3)	3.2_{0}
N6C	3050 (3)	3602(2) 2193 (3)	2.72
C4A	1242 (3)	982 (2) 1935 (3)	1.9_{6}
C5A	949 (3)	561(2) 823 (3)	2.3_{4}
C6A	1831 (3	599(2	-66(3)	2.1_{1}
C7A	2889 (3)	314(2) 404 (3)	2.6_{3}
C8A	3182 (3	724 (2) 1534(3)	2.6_1
C9A	2292 (3)	672(2) 2397 (3)	2.2_{4}
О	352 (3)	3774(3) 2548(4)	7.3_{8}

a) $B_{\rm eq} = 4/3 (B_{11}a^2 + B_{22}b^2 + B_{33}c^2 + B_{12}ab\cos\gamma + B_{13}a\cos\beta + B_{23}b\cos\alpha$).

high values, whereas no anomalies were found in the case of A2/a. Independent 2794 reflections with $|F_o| > 3\sigma(|F_o|)$ were used for structure determination. The structure was solved by the heavy-atom method with a local version of UNICS.¹¹⁾ The final refinement was carried out by using the full-matrix least squares program LINUS¹²⁾ with anisotropic temperature factors for non-hydrogen atoms and isotropic ones for hydrogen atoms. The final R and R_2 values were 0.048 and 0.055,¹³⁾ respectively. The positions of all hydrogen atoms were determined from the difference-Fourier map.

b) [Co(CN)₈(chta)]· H₂O: From the observed systematic absence of 0 k l for k=2n+1, h 0 l for l=2n+1, and h k 0 for h=2n+1, the space group was uniquely determined to be Pbca. Independent 2674 reflections with $|F_o| > 3\sigma(|F_o|)$ were used. The structure was solved by the Patterson–Fourier method with UNICS.¹¹⁾ The refinement was carried out by using the block-diagonal least squares program HBLS IV. With anisotropic temperature factors for non-hydrogen atoms and isotropic ones for hydrogen atoms, the final R and R_2 values were 0.045 and 0.049, respectively. Fourteen of fifteen hydrogen atoms, except those of the water molecule, were located from the difference-Fourier map. The position of the remaining hydrogen atom was determined theoretically.

The final atomic parameters and temperature factors of both the complexes are given in Tables 2 and 3.14)

Results and Discussion

Projections of the crystal structures of $[Co(chta)_2]I_3$ along the b axis and of $[Co(CN)_3(chta)] \cdot H_2O$ along the c axis are shown in Figs. 2 and 3. Perspective drawings of the complexes are shown in Figs. 4 and 5.

In both the complexes, the chta ligands are spanned on a face of an octahedron, that is, they coordinate in the facial positions, as expected.

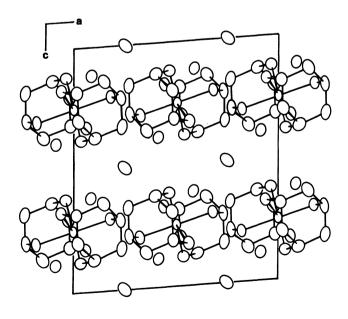


Fig. 2. Crystal structure of [Co(chta)₂]I₃ projected along the b-axis.

Bond distances and angles within the complex ion and molecule are listed in Tables 4 and 5, together with estimated standard deviations. Between both the complexes there are no remarkable differences with respect to the chta chelate. The Co-N(amine) bond distances which range from 1.948(6) to 2.010(3) Å are similar to those of some CoN₆ complexes with sixmembered chelate rings. These values are also in good agreement with the Co-N(NH₃) bond lengths of the corresponding ammine complexes (2.01 Å for *fac*-[Co(CN)₃(NH₃)₃)⁸) and 1.979(1) Å for [Co(NH₃)₆][Cr-(CN)₆]). The angles N(amine)-Co-N(amine) in the

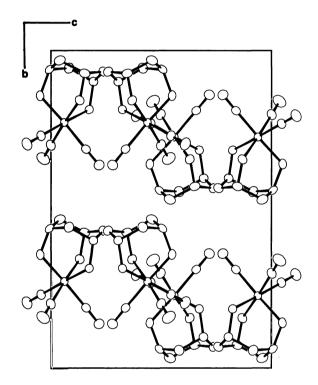


Fig. 3. Crystal structure of $[Co(CN)_3(chta)]$ projected along the a-axis.

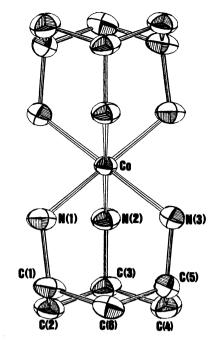


Fig. 4. Perspective drawing of the [Co(chta)₂]³⁺.

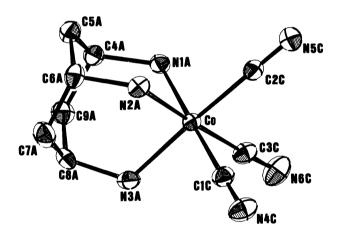


Fig. 5. Perspective drawing of the [Co(CN)₃(chta)].

Table 4. Bond Distances and Angles within Cation [Co(chta)₂]³⁺ with Estimated Standard Deviations in Parentheses

Bond distances l/Å		Bond angles $\phi/^{\circ}$			
Co-N(1)	1.984(6)	N (1) -Co-N (2)	90.1(3)	C(1)-C(2)-C(3)	112.2(7)
Co-N(2)	1.986(6)	N(1)-Co- $N(3)$	90.0(3)	C(2)-C(3)-C(4)	111.3(7)
Co-N(3)	1.992(7)	N(2)-Co- $N(3)$	89.9(3)	C(3)-C(4)-C(5)	113.0(7)
				C(4)-C(5)-C(6)	111.8(7)
N(1)-C(1)	1.494(10)	Co-N(1)-C(1)	119.3(5)	C(5)-C(6)-C(1)	111.6(7)
N(2) - C(3)	1.517(10)	Co-N(2)-C(3)	118.4(5)	C(6)-C(1)-C(2)	112.4(7)
N(3) - C(5)	1.510(10)	Co-N(3)-C(5)	118.9(5)		
C(1)-C(2)	1.502(11)	N(1)-C(1)-C(2)	110.9(6)		
C(2) - C(3)	1.524(11)	N(1)-C(1)-C(6)	108.9(6)		
C(3)-C(4)	1.508(12)	N(2)-C(3)-C(2)	109.7(6)		
C(4) - C(5)	1.522(12)	N(2)-C(3)-C(4)	110.4(6)		
C(5) - C(6)	1.516(12)	N(3)-C(5)-C(4)	108.8(7)		
C(6) - C(1)	1.534(12)	N(3)-C(5)-C(6)	110.4(7)		

Table 5. Bond Distances and Angles within Complex [Co(CN)₃(chta)] with Estimated Standard Deviations in Parentheses

Bond dista	ances l/Å	Bond angles $\phi/^{\circ}$			
Co-N1A	2.010(3)	N1A-Co-N2A	90.3(1)	C4A-C5A-C6A	112.5(3)
Co-N2A	1.996(3)	N2A-Co-N3A	91.7(1)	C5A-C6A-C7A	112.5(3)
Co-N3A	1.997(3)	N3A-Co-N1A	89.6(1)	C6A-C7A-C8A	112.3(3)
				C7A-C8A-C9A	111.7(3)
Co-C1C	1.888(3)	C1C-Co-C2C	88.3(1)	C8A-C9A-C4A	112.9(3)
Co-C2C	1.890(3)	C2C-Co-C3C	87.8(1)	C9A-C4A-C5A	110.7(3)
Co-C3C	1.884(3)	C3C-Co-C1C	87.1(1)		
N1A-C4A	1.498(4)	Co-N1A-C4A	117.8(2)		
N2A-C6A	1.490(4)	Co-N2A-C6A	118.1(2)		
N3A-C8A	1.498(5)	Co-N3A-C8A	118.0(2)		
C4A-C5A	1.523(5)	Co-C1C-N4C	179.3(3)		
C5A-C6A	1.522(5)	Co-C2C-N5C	178.3(3)		
C6A-C7A	1.519(5)	Co-C3C-N6C	178.3(3)		
C7A-C8A	1.532(5)				
C8A-C9A	1.509(5)	N1A-C4A-C5A	110.1(3)		
C9A-C4A	1.521(5)	N1A-C4A-C9A	110.8(3)		
		N2A-C6A-C5A	109.8(3)		
C1C-N4C	1.148(5)	N2A-C6A-C7A	109.7(3)		
C2C-N5C	1.148(5)	N3A-C8A-C7A	109.6(3)		
C3C-N6C	1.142(5)	N3A-C8A-C9A	110.4(3)		

chta chelate, close to 90°, are in agreement with those of analogous complexes. 15) Between both the complexes there is few difference in bond length and angle with respect to the triplet six-membered chelate rings, in contrast to the case of [Co(diamine)₃]³⁺ complexes containing six-membered chelate rings. 15, 16) The C-N(amine) and C-C bond distances are normal as such single bonds. The N(amine)-C-C angles are also normal as regular tetrahedral angles, but the Co-N(amine)-C ones are larger than those angles. Thus, these six-membered chelate rings are significantly flattened out. Absolute values of deviations from the plane Co-N-N(in chelate) are 0.91—0.96 Å (C(1)) and 0.56 - 0.62 Å (C(2)) for [Co(chta)₂]³⁺ and 0.90 - 0.97 Å(C4A) and 0.53-0.67 Å (C5A) for [Co(CN)₃(chta)]. These six-membered rings assume more stable and less undistorted chair conformations than [Co(tn)₃]³⁺¹⁷⁾ (Fig. 6). In complex [Co(CN)₃(chta)], the Co-C-(cyano) and C-N(cyano) bond lengths agree with those of $[Co(CN)_3(NH_3)_3]$. The C(cyano)-Co-C-(cyano) angles are smaller than 90°. The dihedral angle between the opposite N-N-N planes in [Co(chta)₂]³⁺ is 0° as deduced necessarily from this symmetry, and that between the N-N-N and C-C-C planes in [Co(CN)3(chta)] is smaller than 1°. The octahedra of the CoN6 and CoN3C3 chromophores are compressed or elongated along the quasi-threefold axes only slightly; the distance between the upper and lower triangles (2.292—2.297 Å) agrees with that estimated for a regular octahedron (2.294 Å).

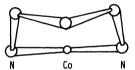


Fig. 6. Conformation of chta chelate ring.

These facts suggest that the distortion of the chromphores, although six-membered rings are formed by the chta ligands, is fairly alleviated by to the presence of the chta itself and that the octahedra retain approximately the O_h symmetry. The structures of the complex and ion, as determined in this work, are in good agreement with the speculations based on the absorption spectra.

References

- 1) Standard space group is C2/c (No. 15).
- 2) R. A. D. Wentworth and J. J. Felton, J. Am. Chem. Soc., **90**, 621 (1968).
- 3) M. Umehara, M. Ishii, T. Nomura, I. Muramatsu, and M. Nakahara, Nippon Kagaku Kaishi, 1980, 657.
- 4) M. Kojima, H. Yamada, H. Ogino, and J. Fujita, *Bull. Chem. Soc. Jpn.*, **50**, 2325 (1977).
- 5) S. Yamada, M. Umehara, M. Ishii, and M. Nakahara, *Nippon Kagaku Kaishi*, **1983**, 1733.
- 6) Y. Yoshikawa and K. Yamasaki, *Bull. Chem. Soc. Jpn.*, **45**, 179 (1972).
- 7) J. Fujita and Y. Shimura, *Bull. Chem. Soc. Jpn.*, **36**, 1281 (1963).

- 8) Y. Yamamoto, Nippon Kagaku Kaishi, 1974, 259.
- 9) M. Ishii, M. Umehara, T. Nomura, and M. Nakahara, Chem. Lett., 1983, 541.
- 10) The reliability indices were 0.060 for A2/a (the number of reflections 2794 and that of parameteres 110) and 0.063 for Aa (the number of reflections 2933 and that of parameters 200). The positions of the non-hydrogen atoms (I, Co, C, N) were determined by using anisotropic temperature factors.
- 11) T. Sakurai, UNICS, the Universal Crystallographic Computing System, Tokyo: The Crystallographic Society of Japan (1967).
- 12) P. Coppens and W. C. Hamilton, *Acta. Crystallogr.*, *Sect. A*, **26**, 71 (1970).
- 13) $R=\Sigma ||F_o|-|F_c||/\Sigma |F_o|$.
- 14) The complete F_o — F_c data are deposited as Document No. 8701 at the Office of the Editor of the Bull. Chem. Soc. Jpn.
- 15) S. Sato and Y. Saito, Acta. Crystallogr., Sect. B, 31, 1378 (1975).
- 16) S. Sato and Y. Saito, Acta. Crystallogr., Sect. B, 34, 420 (1978).
- 17) R. Nagao, F. Marumo, and Y. Saito, *Acta Crystallogr.*, *Sect. B*, **29**, 2438 (1973).